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PART I. Colloidal Suspension
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Figure: (a) Palacci et al., 2013; (b) Chakrabarty et al., 2013; (c) Davies Wykes et al., 2016; (d) Shi et al., 2006.

The motion of N rigid particles immersed in a Stokesian fluid can be modeled
by the overdamped Langevin equation of Brownian Dynamics,

dQ

dt
= NF + (2kBTN )

1
2W(t)︸ ︷︷ ︸

Hydrodynamic interactions + Brownian increments

+ (kBT ) ∂Q · N︸ ︷︷ ︸
Stochastic drift

,

• Q = {qβ, θβ}Nβ=1 consists of positions and orientations of particles,

F = {fβ, τβ}Nβ=1 is the applied forces and torques.

• kBT is the temperature, andW(t) is a vector of white noise processes.
• The hydrodynamic body mobility matrix N (Q) � 0 is symmetric and

positive-definite.

I.1 Challenges/Goals

Our group develop novel computational methods for simulating colloidal
suspensions that feature:
• Complex shapes: beyond analytical approximations that only work for only

spherical particles.
• Boundary conditions: unbounded, periodic, no-slip walls, and in confinement.
• Many-body hydrodynamics: efficient, accurate and scalable to many particles.
• Brownian increments: achieve (near) linear-scaling and strictly obey the

fluctuation-dissipation balance: N
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• Stochastic drift: efficient temporal integrators for large-scale simulations.

I.2 Rigid Multiblob Method
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• The rigid body is discretized through a number of “beads” or “blobs” with
prescribed hydrodynamic radius.
• Add rigidity forces to constrain a group of blobs to move rigidly.
• Hydrodynamic interactions via mobility solver:
◦ Unbounded domains: RPY tensor with a Fast Multipole Method (FMM).
◦ Single wall: Rotne-Prager-Blake tensor with GPU acceleration.
◦ Periodic: spectral Ewald method with FFTs.
◦ General: fluid Stokes solver [1] to compute the Green’s functions on

the fly [3].
• Brownian increments can be efficiently computed in the spectral Ewald or

Stokes solver [1] approach using fluctuating hydrodynamics.

I.3 Fluctuating Boundary Integral Method (FBIM)

• Only particles’ surfaces/boundaries are discretized.
• Hydrodynamics + Brownian increments by solving

a first-kind boundary integral equation
(BIE) with random surface velocity [2].
• Standard techniques for BIE + Positively Split

Ewald method [5].
• Achieves linear-scaling and controlled accuracy

even for dense suspensions.
• Future work: generalizations to 3D and

non-periodic domains.
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Figure: A colloidal suspension of
starfish-shaped particles.

I.4 Large-scale Brownian Dynamics simulations

• Developed efficient temporal integrators based on the Random Finite Difference [3] technique suitable for large-scale simulations [7, 8].

(a) Translating microrollers (b) Boomerangs diffusing near wall (c) Microrollers detach and form critters [4]

PART II. Fluctuating Hydrodynamics of Reactive Electrolyte Mixtures

• Ionic transport in electrolytes (e.g., cell membranes, lithium batteries, fuel cells, etc).
• Classical molecular dynamics are computationally too expensive for the length and time scales involved.
• PI and collaborators at LBNL develop a set of novel models and associated computer algorithms [6] for fluctuating

hydrodynamics of reactive electrolyte mixtures.

Figure: A traveling wave in a three dimensional solution of active species A and B reacting according to A k1−→ Ø, 2A + B k2−→ 3A, Ø
k3−⇀↽−
k4

B,

starting from a spherically-symmetric initial condition, in the presence of fluctuations. The color scale shows the concentration of A.
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