A fluctuating boundary integral method for Brownian suspensions

Yuanxun Bill Bao \(^1\) Manas Rachh \(^2\) Eric Keaveny \(^3\)
Leslie Greengard \(^1\) Aleksandar Donev \(^1\)

\(^1\)Courant Institute, NYU
\(^2\)Yale University
\(^3\)Imperial College London

Complex Creeping Fluids: Numerical Methods and Theory
BIRS-CMO, October 5, 2017
Brownian Particles of Complex Shape

Figure: Brownian motion of passive boomerang colloidal particles from Chakrabarty et al. 2013
Brownian Particles of Complex Shape

Figure: Brownian suspension of 40 starfish-shaped particles.
Consider a suspension of N rigid bodies with configuration $Q = \{q_\beta, \theta_\beta\}_{\beta=1}^N$ consisting of positions and orientations immersed in a Stokes fluid.

The Ito stochastic equation of Brownian Dynamics (BD) is

$$\frac{dQ}{dt} = \mathcal{N}F + (2k_B T \mathcal{N})^{\frac{1}{2}} \mathcal{W}(t) + (k_B T) \partial Q \cdot \mathcal{N},$$

where $\mathcal{N}(Q)$ is the body mobility matrix, $F = \{f_\beta, \tau_\beta\}_{\beta=1}^N$ is the applied forces and torques, $k_B T$ is the temperature, and $\mathcal{W}(t)$ is a vector of independent white noise processes.

The stochastic noise amplitude satisfies the fluctuation-dissipation balance:

$$\mathcal{N}^{\frac{1}{2}} \left(\mathcal{N}^{\frac{1}{2}} \right)^* = \mathcal{N}.$$

The stochastic drift term $\partial Q \cdot \mathcal{N} = \sum_j \partial_j \mathcal{N}_{ij}$ is related to the Ito interpretation of the noise.
The body mobility matrix $\mathcal{N}(Q) \succ 0$ is a symmetric positive definite (SPD) and it includes hydrodynamic interactions and periodic boundary conditions.

For viscous-dominated flows ($Re \to 0$), we can assume steady Stokes flow and solve the deterministic Stokes mobility problem,

$$U = \mathcal{N} F,$$

where $U = \{u_\beta, \omega_\beta\}_{\beta=1}^{N}$ collects the linear and angular velocities.

At every time step of BD simulation, we need to generate particle velocity in the form of (dropping $k_B T$),

$$\tilde{U} = \mathcal{N} F + \mathcal{N}^{\frac{1}{2}} W.$$

This talk: How to accurately and efficiently compute the action of \mathcal{N} and $\mathcal{N}^{\frac{1}{2}}$?
Motivations

The majority of BD-HI methods in chemical engineering:

▷ are limited to spherical particles;
▷ use an *uncontrolled* truncation of multipole expansion \Rightarrow low accuracy in the near field;
▷ scale *super-linearly* for generating $\mathcal{N}^{\frac{1}{2}} W$.

We combine ideas from **Positively Split Ewald** (Fiore et al. 2017) and boundary integral methods to develop methods that

▷ handle particles of nonspherical, *complex shape*;
▷ have *controlled* accuracy for dense suspensions;
▷ achieve *linear-scaling* with the number of particles.

\Rightarrow *1st* boundary integral method that accounts for Brownian motion of nonspherical particles immersed in a viscous incompressible fluid.

Let us first ignore Brownian terms $N^{1/2}W$ and solve a mobility problem to compute N^F.

For simplicity, consider only a single body Ω. The first-kind boundary integral equation for the mobility problem,

$$u + \omega \times (x - q) = v(x \in \partial \Omega) = \int_{\partial \Omega} G(x - y) \psi(y) dS_y, \quad (1)$$

along with force and torque balance conditions,

$$\int_{\partial \Omega} \psi(x) dS_x = f \quad \text{and} \quad \int_{\partial \Omega} (x - q) \times \psi(x) dS_x = \tau, \quad (2)$$

where $\psi(x \in \partial \Omega)$ is the traction and G is the (periodic) Green’s function for the Stokes flow (Stokeslet).

Note that one can alternatively use a completed second-kind or a mixed first-second kind formulation for improved conditioning. We only know how to generate Brownian displacements efficiently in the first-kind formulation.
First-Kind Boundary Integral Formulation

▷ Assume that the surface of the body $\partial \Omega$ is discretized in some manner, and the single-layer operator \mathcal{M} is approximated by some quadrature,

$$\int_{\partial \Omega} \mathcal{G}(x - y) \psi(y) dS_y \equiv \mathcal{M} \psi \rightarrow \mathcal{M} \mu,$$

where \mathcal{M} is a SPD operator with kernel \mathcal{G} with r^{-1} singularity in 3D ($\log r$ in 2D), discretized as a SPD single-layer matrix \mathcal{M}.

▷ In matrix notation the mobility problem can be written as a saddle-point linear system for the surface forces μ and rigid-body motion $U = \{u, \omega\}$,

$$\begin{bmatrix} M & -K \\ -K^T & 0 \end{bmatrix} \begin{bmatrix} \mu \\ U \end{bmatrix} = - \begin{bmatrix} 0 \\ F \end{bmatrix}, \quad (3)$$

where $K^T \mu$ is the discrete force and torque balances.

▷ Using Schur complement to eliminate μ, we get

$$U = \mathcal{N} F = (K^T M^{-1} K)^{-1} F.$$
How do we compute the action of $\mathcal{N}^{\frac{1}{2}}$? More precisely, how to generate a Gaussian random vector with covariance \mathcal{N}?

Assume for now we knew how to generate a random surface velocity $\mathbf{\tilde{v}}(\mathbf{x} \in \partial \Omega)$ with covariance \mathbf{M} (periodic Stokeslet).

In the continuum setting, $\mathbf{\tilde{v}}$ is a **distribution**, not a function. Formally,

$$\langle \mathbf{\tilde{v}} \mathbf{\tilde{v}} \rangle = \mathbf{M}.$$
Key idea 1: solve the mobility problem with $\bar{\mathbf{v}} = \mathbf{M}^{\frac{1}{2}}\mathbf{W}$,

$$
\begin{bmatrix}
\mathbf{M} & -\mathbf{K} \\
-\mathbf{K}^\top & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{\mu} \\
\mathbf{U}
\end{bmatrix}
= -
\begin{bmatrix}
\mathbf{\bar{v}} \\
\mathbf{F}
\end{bmatrix},
$$

which defines a $\mathcal{N}^{\frac{1}{2}}$ with the correct covariance:

$$
\mathcal{N}^{\frac{1}{2}} \left(\mathcal{N}^{\frac{1}{2}} \right)^* = \mathcal{N} \mathbf{K}^\top \mathbf{M}^{-1} \mathbf{M}^{\frac{1}{2}} \left(\mathbf{M}^{\frac{1}{2}} \right)^* \mathbf{M}^{-1} \mathcal{N} = \mathcal{N} \left(\mathbf{K}^\top \mathbf{M}^{-1} \mathbf{K} \right) \mathcal{N} = \mathcal{N} \left(\mathcal{N}^{-1} \right) \mathcal{N} = \mathcal{N}.
$$

$\bar{\mathbf{v}}$ comes from the stochastic stress tensor in fluctuating hydrodynamics after eliminating the fluid velocity and pressure from the fluid-body equations of motion.
Ewald Splitting of \mathbf{M}

- We need accurate and fast algorithms for $\mathbf{M}\mu$ and $\mathbf{M}^{\frac{1}{2}}W$.
- **Key idea 2**: split the Stokeslet into SPD kernels:

$$
\mathcal{G} = \underbrace{H \ast \mathcal{G}} + \underbrace{(\mathcal{G} - H \ast \mathcal{G})} \equiv \mathcal{G}_r + \mathcal{G}_w,
$$

where the Hasimoto function is $\hat{H}(k; \xi) = \left(1 + \frac{k^2}{4\xi^2}\right) e^{-k^2/4\xi^2}$.

This is the key idea of **Positively Split Ewald** (Fiore et al., J. Chem. Phys., 2017).

- Recall that

$$
\int_{\partial \Omega} \mathcal{G}(x - y)\psi(y) dS_y \equiv \mathcal{M}\psi \approx \mathbf{M}\mu.
$$

The splitting of \mathcal{G} naturally induces the splitting of \mathcal{M}, and subsequently the splitting of \mathbf{M} into SPD matrices,

$$
\mathbf{M} = \mathbf{M}^{(r)} + \mathbf{M}^{(w)}.
$$
Fast Algorithm for $\mathbf{M}\mu$

\begin{itemize}
 \item $\mathbf{M}^{(r)}\mu$:
 \begin{itemize}
 \item To handle the singularity of $G_{\xi}^{(r)}$, we need to employ singular quadrature (e.g., Alpert quadrature in 2D).
 \item Since $G_{\xi}^{(r)}$ decays as $\exp(-\xi^2 r^2)$, the mat-vec product $\mathbf{M}^{(r)}\mu$ can be computed rapidly with linear-scaling in the real space.
 \end{itemize}
 \item $\mathbf{M}^{(w)}\mu$:
 \begin{itemize}
 \item The far-field sum can be accelerated by the Spectral Ewald method (Lindbo/Tornberg) in Fourier space,
 \end{itemize}
\end{itemize}

$$\mathbf{M}^{(w)} = \mathbf{D}^\dagger \mathbf{B} \mathbf{D}, \quad (8)$$

where \mathbf{D} is the non-uniform FFT (Greengard/Lee), and \mathbf{B} is a SPD block-diagonal matrix (in Fourier space),

$$\mathbf{B}(k, \xi) = \frac{\hat{H}(k, \xi)}{k^2}(\mathbf{I} - \hat{k}\hat{k}).$$
Splitting of $\mathbf{M}^{1/2}\mathbf{W}$

- **Key Idea 3**: generate random surface velocity with covariance \mathbf{M} by

$$
\mathbf{M}^{1/2}\mathbf{W} \overset{\text{d}}{=} \left(\mathbf{M}(\mathbf{w})\right)^{1/2} \mathbf{W}(\mathbf{w}) + \left(\mathbf{M}(\mathbf{r})\right)^{1/2} \mathbf{W}(\mathbf{r}),
$$

(9)

if both $\mathbf{M}(\mathbf{w})$ and $\mathbf{M}(\mathbf{r})$ are SPD and $\langle \mathbf{W}(\mathbf{w})\mathbf{W}(\mathbf{r}) \rangle = 0$.

- The far-field matrix $\mathbf{M}(\mathbf{w})$ is SPD by construction, and we can write

$$
\mathbf{M}(\mathbf{w}) = \mathbf{D}^\dagger \mathbf{B} \mathbf{D} = \left(\mathbf{D}^\dagger \mathbf{B}^{1/2}\right) \left(\mathbf{D}^\dagger \mathbf{B}^{1/2}\right)^\dagger,
$$

(10)

so that the wave-space random surface velocity can be generated with a single call to the NUFFT,

$$
\left(\mathbf{M}(\mathbf{w})\right)^{1/2} \mathbf{W}(\mathbf{w}) = \mathbf{D}^\dagger \mathbf{B}^{1/2} \mathbf{W}(\mathbf{w}).
$$

(11)
The near-field random surface velocity \((M^{(r)})^{1/2} W^{(r)}\) can be generated by a **Krylov Lanczos method** of Chow/Saad.

Because of the **short-ranged** nature of \(M^{(r)}\), the Lanczos method converges in a reasonable amount of iterations.

However, in general, \(M^{(r)}\) is *not* symmetric, so \(M^{(r)}\) is not SPD strictly speaking, because the Alpert quadrature does not enforce the SPD of \(M\).

Nevertheless, we find that symmetrizing \(\frac{1}{2} \left(M^{(r)} + (M^{(r)})^T \right)\) preserves the order of accuracy of Alpert quadrature, and the Krylov Lanczos iteration is rather **insensitive** to any small negative eigenvalues.
To mitigate the inherent ill-conditioning of M due to the use of a first-kind boundary integral formulation, we apply a **block-diagonal preconditioner**, *i.e.*, we simply neglect all hydrodynamic interactions between distinct bodies in the preconditioner, both when solving the saddle-point mobility problem using GMRES, and in the Lanczos iteration for generating $(M(r))^{\frac{1}{2}} W(r)$.

Both preconditioners can be **precomputed** using LAPACK for a single body, and then applied to many bodies via two fast vector rotations per body.

GMRES and Lanczos converge in a **constant** number of iterations, growing only weakly with packing fraction.
FBIM provides the key ingredients for BD simulations of complex-shaped particle: $\mathcal{N}F + \mathcal{N}^{\frac{1}{2}}W$.

▷ Solve the **mobility problem** with a random surface velocity:

$$
\begin{bmatrix}
M & -K \\
-K^T & 0
\end{bmatrix}
\begin{bmatrix}
\mu \\
U
\end{bmatrix}
= -
\begin{bmatrix}
M^{\frac{1}{2}}W \\
F
\end{bmatrix},
$$

implies

$$
U = (K^T M^{-1}K)^{-1}F + \mathcal{N}K^T M^{-1} M^{\frac{1}{2}} W = \mathcal{N}F + \mathcal{N}^{\frac{1}{2}}W.
$$

▷ Fast methods for $M\mu$ and $M^{\frac{1}{2}}W$.

- $M = M^{(r)} + M^{(w)}$: sparse mat-vec + Spectral Ewald
- $M^{\frac{1}{2}}W \overset{d.}{=} (M^{(r)})^{\frac{1}{2}} W^{(r)} + (M^{(w)})^{\frac{1}{2}} W^{(w)}$: Lanczos + NUFFT.
- Block-diagonal preconditioner for GMRES and Lanczos.

▷ An **efficient, accurate, linear-scaling** algorithm for generating deterministic and stochastic particle velocities of Brownian suspensions.
This proof-of-concept algorithm/implementation is in 2D only, but the main ideas can be carried over to 3D in principle (but with some technical difficulties that need to be overcome!).

Figure: Random configurations of 100 starfish-shaped particles with packing fraction $\phi = 0.32$ (moderately high density)
Figure: Accuracy of 1st- and 2nd-kind (spectral in 2D!) deterministic mobility solvers for the dense suspensions. While the 2nd-kind solver gives spectral accuracy and converges faster with number of DOFs, the first kind is more accurate for low resolutions especially at higher densities (but what about 3D?).
Figure: We expect much better scaling in 3D due to faster decay of Stokeslet.
Figure: Linear scaling of the algorithm with the number of bodies.
Ewald (Hasimoto) splitting can be used to accelerate both deterministic and stochastic simulations in periodic domains.

Key is to ensure both far-field and near-field are (essentially) SPD so one piece is generated using FFTs and the other using iterative methods.

Using these principles we have constructed a linear-scaling fluctuating boundary integral method (FBIM) for Brownian suspensions of complex-shaped particles.
Future Work

▷ Generalization to 3D involves several technical difficulties:
 - discretization of particle surfaces (e.g., high-order triangular elements).
 - a suitable choice of quadrature, in particular, one that preserves SPD of the single-layer operator.

▷ Efficient stochastic temporal integrators that
 - account for the Ito stochastic drift term solving as few as possible mobility problems per time step (see Sprinkle et al., 2017, ArXiv:1709.02410)
 - handle particle collision for denser suspensions.

▷ Extending FBIM to other domains (e.g., unbounded, confined).

▷ Can a similar idea be combined with (grid-free) the Fast Multipole Method for unbounded domains?