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Brownian Dynamics with Hydrodynamic Interactions

. Consider a suspension of Nb rigid bodies with configuration
Q = {qβ ,θβ}Nb

β=1 consisting of positions and orientations im-
mersed in a Stokes fluid.

. The Ito stochastic equation of Brownian Dynamics (BD) is

dQ

dt
= −N∂QU + (2kBTN )

1
2 W(t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix, U(Q) is the potential
energy, kBT is the temperature, and W(t) is a vector of independent
white noise processes.

. Here the stochastic noise amplitude is determined from the

fluctuation-dissipation balance: N
1
2

(
N

1
2

)∗
= N .

. The stochastic drift term ∂Q ·N =
∑

j ∂jNij is related to the Ito
interpretation of the noise.
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Hydrodynamic Body Mobility Matrix

. The body mobility matrix N (Q) � 0 is a symmetric positive
semidefinite (SPD) and it includes hydrodynamic interactions and
(periodic) boundary conditions.

. For viscous-dominated flows (Re → 0), we can assume steady
Stokes flow and solve the Stokes mobility problem,

U = NF,

where U = {uβ ,ωβ}Nb

β=1 collects the linear and angular velocities,

F = {fβ , τβ}Nb

β=1 collects the applied forces and torques.

. At every time step of BD simulation, we need to generate particle
velocity in the form of (dropping kBT ),

Ũ = NF + N
1
2 W.

. This talk: How to accurately and efficiently compute the action of

N and N
1
2 ?

Y. Bao (CIMS) Fluctuating BIE



Hydrodynamic Body Mobility Matrix

. The body mobility matrix N (Q) � 0 is a symmetric positive
semidefinite (SPD) and it includes hydrodynamic interactions and
(periodic) boundary conditions.

. For viscous-dominated flows (Re → 0), we can assume steady
Stokes flow and solve the Stokes mobility problem,

U = NF,

where U = {uβ ,ωβ}Nb

β=1 collects the linear and angular velocities,

F = {fβ , τβ}Nb

β=1 collects the applied forces and torques.

. At every time step of BD simulation, we need to generate particle
velocity in the form of (dropping kBT ),
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First-Kind Boundary Integral Formulation

. Let us first ignore Brownian terms and solve a mobility problem to
compute NF.

. For simplicity, consider only a single body Ω. The first-kind bound-
ary integral equation for the mobility problem,

v(q) = u +ω×q =

∫
∂Ω

G(q−q′) µ(q′) dq′ for all q ∈ ∂Ω, (1)

along with force and torque balance conditions∫
∂Ω

µ(q) dq = f and

∫
∂Ω

q× µ(q) dq = τ , (2)

where µ(q ∈ ∂Ω) is the surface traction (single-layer density) and
G is the (periodic) Stokeslet.

. Note that one can alternatively use a completed second-kind or a
mixed first-second kind formulation for improved conditioning.
We only know how to generate Brownian displacements efficiently
in the first-kind formulation.
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First-Kind Boundary Integral Formulation

. Assume that the surface of the body is discretized in some man-
ner, and the single-layer operator M is approximated by some
quadrature, ∫

∂Ω

G(q− q′) µ(q′) dq′ ≡Mµ→Mλ,

where M is a SPD operator with kernel G with r−1 singularity in
3D (log r in 2D), discretized as a SPD mobility matrix M.

. In matrix notation the mobility problem can be written as a saddle-
point linear system for the surface forces λ and rigid-body motion
U, [

M −K
−K> 0

] [
λ
U

]
= −

[
0
F

]
, (3)

where K is a simple geometric matrix.

. Using Schur complement to eliminate λ, we get

U = NF = (K>M−1K)−1F.
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Brownian Displacements

. How do we compute the action of N
1
2 ?

More precisely, how to generate a Gaussian random vector with co-
variance N ?

. Assume for now we knew the action of M
1
2 on a vector of Gaussian

random variables W, i.e., that we knew how to generate a random
“slip” velocity with covariance given by M (periodic Stokeslet).

. Key idea 1: solve the mobility problem with such a random slip[
M −K
−K> 0

] [
λ
U

]
= −

[
M

1
2 W
F

]
, (4)

=⇒ U = NF + NK>M−1M
1
2 W = NF + N

1
2 W,

which defines a N
1
2 with the correct covariance:

N
1
2

(
N

1
2

)∗
= N K>M−1M

1
2

(
M

1
2

)∗
M−1K N

= N (K>M−1K)N = N (N )−1N = N . (5)
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The Single-Layer Mobility Matrix

. We need accurate and efficient routines to compute the action of M
and M

1
2 for many bodies.

. Recall that Mµ ≡
∫
∂Ω

G(q − q′) µ(q′) dq′, where G is a weakly
singular kernel that includes periodic BC effects.

. Key idea 2: Singular quadrature (Alpert in 2D) + Spectral Ewald
method to split the Stokeslet into near-field and far-field pieces:

G = G(r)
ξ + G(w)

ξ

.

. This idea comes from the recent work “Rapid Sampling of Stochastic
Displacements in Brownian Dynamics Simulations” by A. M. Fiore,
F. Balboa Usabiaga, A. Donev and J. W. Swan, to appear in J.
Chem. Phys., 2017 [?].
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Ewald Splitting of M

. The splitting of G induces a corresponding splitting of M into near-
field and far-field pieces:

M = M(r) + M(w)

= M
(r)
Alpert + M

(r)
trap + M(w),

where M
(r)
Alpert is a block-diagonal band-limited matrix whose ele-

ments are (local) Alpert corrections to the trapezoidal rule and(
M

(r)
trap

)
ij

= G(r)
ξ (qi − qj) and

(
M(w)

)
ij

= G(w)
ξ (qi − qj), i 6= j .
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Near-Field Piece of M

Mλ =
(

M
(r)
Alpert + M

(r)
trap + M(w)

)
λ

. M
(r)
Alpert: Alpert correction matrix is precomputed for a single body

in some reference configuration, and apply to each body via rotation.

. M
(r)
trap: sparse matrix-vector multiplication because the real-space

kernel G(r)
ξ decays like e−ξ

2d2

, where d = |qi − qj |.
The action of M

(r)
trap can be efficiently computed by cell linked-lists

as used in the classical MD method.
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Far-Field Piece of M

Mλ =
(

M
(r)
Alpert + M

(r)
trap + M(w)

)
λ

. M(w): the wave-space kernel G(w)
ξ is smooth and regular,

G(w)(r) =
1

V

∑
k6=0

e ik·(r) H(k , ξ)

k2
(I− k̂k̂), (6)

where the Hasimoto splitting function H(k , ξ) =
(

1 + k2

4ξ2

)
e−k

2/4ξ2

.

. We can efficiently compute the action of M(w) in Fourier space by
using the Spectral Ewald method of Lindbo/Tornberg [?],

M(w) = S†BS, (7)

where S is the non-uniform FFT (NUFFT) of Greengard/Lee [?],
and B is a SPD block-diagonal matrix (in Fourier space),

B(k , ξ) =
H(k , ξ)

k2
(I− k̂k̂).
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Far-Field Random Slip Velocity

. Key Idea 3: random slip velocity with covariance M is generated by

M
1
2 W

d.
=
(

M(w)
) 1

2

W(w) +
(

M(r)
) 1

2

W(r), (8)

if both M(w) and M(r) are SPD and 〈W(w)W(r)〉 = 0.
Also taken from recent work of Fiore et al. [?]

. The far-field piece M(w) is SPD by construction and we can write

M(w) = S†BS =
(

S†B
1
2

)(
S†B

1
2

)†
, (9)

so that the wave-space random slip velocity can be generated with
a single call to the NUFFT,(

M(w)
) 1

2

W(w) = S†B
1
2 W(w), (10)

. This is equivalent to how Brownian displacements are generated in
methods like the Fluctuating Immersed Boundary [?] and the fluctu-
ating Force Coupling Method [?] by using fluctuating hydrodynamics
(putting stochastic forcing on fluid rather than on particles).
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Also taken from recent work of Fiore et al. [?]

. The far-field piece M(w) is SPD by construction and we can write

M(w) = S†BS =
(

S†B
1
2

)(
S†B

1
2

)†
, (9)

so that the wave-space random slip velocity can be generated with
a single call to the NUFFT,(

M(w)
) 1

2

W(w) = S†B
1
2 W(w), (10)

. This is equivalent to how Brownian displacements are generated in
methods like the Fluctuating Immersed Boundary [?] and the fluctu-
ating Force Coupling Method [?] by using fluctuating hydrodynamics
(putting stochastic forcing on fluid rather than on particles).
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Near-Field Random Slip Velocity

. For the near-field random slip velocity, we need to generate the action
of the square root of a sparse matrix,

M(r) = M
(r)
Alpert + M

(r)
trap

. For sparse matrices, the principal square root can be efficiently com-
puted by a Krylov Lanczos method of Chow/Saad [?].

. In general, M
(r)
Alpert is not symmetric, so M(r) is not SPD strictly

speaking. Nevertheless, we find that symmetrizing M
(r)
Alpert preserves

the order of accuracy of Alpert quadrature, and the Krylov Lanczos
iteration is rather insensitive to any small negative eigenvalues.
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Block-Diagonal Preconditioners

. To mitigate the inherent ill-conditioning of M due to the use of a
first-kind boundary integral formulation, we apply a block-diagonal
preconditioner, i.e., we simply neglect all hydrodynamic interactions
between distinct bodies in the preconditioner, both when solving the
saddle-point mobility problem using GMRES, and in the Lanczos

iteration for generating
(
M(r)

) 1
2 W(r).

. Both preconditioners can be precomputed using LAPACK for a sin-
gle body, and then applied to many bodies via two fast vector rota-
tions per body.

. GMRES and Lanczos converge in a constant number of iterations,
growing only weakly with packing density.
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Numerical Results

. This proof-of-concept algorithm/implementation is in 2D only, but
the main ideas can be carried over to 3D in principle (but with some
technical difficulties that need to be overcome!).
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Figure: Random configurations of 100 disks with packing ratio φ = 0.25 (low
density) and φ = 0.5 (moderately high density)
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Accuracy of NF

32 64 128

Num. pts. per body

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

R
el
a
ti
v
e
er
ro
r
in

U
=

N
F

Area fraction φ = 0.25

1st-kind, 4th-order

1st-kind, 8th-order

2nd-kind

32 64 128

Num. pts. per body

10
-11

10
-9

10
-7

10
-5

10
-3

R
el
a
ti
v
e
er
ro
r
in

U
=

N
F

Area fraction φ = 0.5

1st-kind, 4th-order

1st-kind, 8th-order

2nd-kind

Figure: Accuracy of 1st- and 2nd-kind (spectral in 2D!) mobility solvers for
dilute and dense hard-disk suspensions. While the 2nd kind gives spectral
accuracy and converges faster with number of DOFs, the first kind is more
accurate for low resolutions especially at higher densities (but what about 3D?).
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Convergence and robustness (2D specific!)
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Figure: We expect much better scaling in 3D due to faster decay of Stokeslet.
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Efficiency and Scaling
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Figure: Left: Optimal Ewald splitting parameter, specific to our 2D Matlab
implementation. In 3D one expects to see an optimal splitting parameter (see
Fiore et al. [?]). Right: Linear scaling of the algorithm with the number of
bodies.
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Conclusion

. Ewald (Hasimoto) splitting can be used to accelerate both deter-
ministic and stochastic simulations in periodic domains.

. Key is to ensure both far-field and near-field are (essentially) SPD
so one piece is generated using FFTs and the other using iterative
methods.

. Using these principles we have constructed a linear-scaling fluctu-
ating boundary element method for Brownian suspensions.

. Can a similar idea be used with boundary integral methods
based on grid-free fast multipole methods (e.g., unbounded
domains)?
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