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Density-Stratified Fluid Dynamics

Density-Stratified Fluids
> density of the fluid varies with altitude
> stable stratification: heavy fluids below light fluids, internal waves

> unstable stratification: heavy fluids above light fluids, convective dynamics

Buoyancy-Gravity Restoring Dynamics

> uniform stable stratification: dp/dz < 0 constant

> vertical displacements = oscillatory motions



Internal Gravity Waves
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> evidence of internal gravity waves in the atmosphere

> left: lenticular clouds near Mt. Ranier, Washington

> right: uniform flow over a mountain = oscillatory wave motions
> scientific significance of studying internal gravity waves

> internal waves are known to be unstable

> a major suspect of clear-air-turbulence



Gravity Wave Instability: Three Approaches

Triad resonant instability (Davis & Acrivos 1967, Hasselmann 1967)
> primary wave + 2 infinitesimal disturbances = exponential growth

> perturbation analysis

Direct Numerical Simulation (Lin 2000)
> primary wave + weak white-noise modes
> stability diagram

> unstable Fourier modes
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Linear Stability Analysis & Floquet-Fourier method (Mied 1976, Drazin 1977)

> linearized Boussinesq equations & stability via eigenvalue computation



My Thesis Goal
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> Floquet-Fourier computation: over-counting of instability in wavenumber space

> Lin’s DNS: two branches of disturbance Fourier modes

> goal: to identify all physically unstable modes from Floquet-Fourier computation
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> Floquet-Fourier computation: over-counting of instability in wavenumber space

> Lin'’s DNS: two branches of disturbance Fourier modes

> goal: to identify all physically unstable modes from Floquet-Fourier computation




The Governing Equations

Boussinesq Equations in Vorticity-Buoyancy Form

D Db
J — . — ./\[2
Dt

> incompressible, inviscid Boussinesq Fluid
> Euler equations + weak density variation (the Boussinesq approximation)

> Brunt-Vaisala frequency N: uniform stable stratification, N2 > 0
> 2D velocity: @(z, 2,t) ; buoyancy: b(z, z,t)

> streamfunction: @ = ( U ) = _Vxyj = ( 7;52 )
x

w

> vorticity: VXi= ng = V24



Exact Plane Gravity Wave Solutions

buoyancy b buoyancy b

Db s
Dt

> dynamics of buoyancy & vorticity = oscillatory wave motions

> exact plane gravity wave solutions

¥ —Qq/K
b = N2 2A sin(Kz + Mz — Qqgt)
n N2K/Qq

> primary wavenumbers: (K, M)
N2 K2

> dispersion relation: Q2(K, M) = EFSVER



Linear Stability Analysis

> dimensionless exact plane wave + small disturbances

P —-Q ¢

b = 1 2¢ sin(z + 2z — Q) + b

n 1/Q i
. . . . . 2 1

> € dimensionless amplitude & dimensionless frequency: ¢ = 742
> linearized Boussinesq equations

6212:'11 + '&zz = ﬁ
it 4+ br —  2eJ(Q+P/Q, sin(z +z — Q) = 0
by — e — 2J(QW+ P, sin(z+z—Qt)) = 0

> 0 = K/M: related to the wave propagation angle (Lin: § = 1.7)

> Jacobian determinant

fz gx

J(f,g) = ‘fz 9= = fz92 — 9= fz




Linear Stability Analysis

> dimensionless exact plane wave + small disturbances

P —-Q ¢

b = 1 2¢ sin(z + 2z — Q) + b

n 1/Q i
. . . . . 2 1

> € dimensionless amplitude & dimensionless frequency: ¢ = 742
> linearized Boussinesq equations

6212:'11 + '&zz = ﬁ
it 4+ br —  2eJ(Q+P/Q, sin(z +z — Q) = 0
by — e — 2J(QW+ P, sin(z+z—Qt)) = 0

> system of linear PDEs with non-constant, but periodic coefficients

> analyzed by Floquet theory

> classical textbook example: Mathieu equation (Chapter 3)



Floquet Theory: Mathieu Equation

Mathieu Equation:

2
% + [k2 —2ecos(t)] u=0

> second-order linear ODE with periodic coefficients
> Floquet theory: u = e~ - p(t) = exponential part X co-periodic part

> Floquet exponent w(k;e¢): Imw > 0 — instability

> goal: to identify all unstable solutions in (k, €)-space




Floquet Theory: Mathieu Equation

Mathieu Equation:

2
(27;‘ + [k2 —2ecos(t)] u=0

Two perspectives:

> perturbation analysis = two branches of Floquet exponent

> away from resonances: w(k;e€) ~ tk
. . . 1 1
> resonant instability at primary resonance | k = 5 s w(k;e) ~ :|:§ +ie

> Floquet-Fourier computation of w(k;e€)

> a Riemann surface interpretation of w(k;e¢) with k € C



Floquet-Fourier Computation

> Mathieu equation in system form:

%(Z) = i{k2—2(e)'cos(t) H(Z)

> Floquet-Fourier representation:

oo
u —4 — —1
( v ):6 iwt | 2 Cme imt

m=-—oo

> w(k;e¢) as eigenvalues of Hill's bi-infinite matrix: So M
eM S;
> 2 X 2 real blocks: S,, and M
> truncated Hill's matrix: —N <m < N
> real-coefficient characteristic polynomial
> compute 4N + 2 eigenvalues: {wy(k;€)}
> ¢ =0, eigenvalues from S, blocks: wn (k;0) = —n =k & all real-valued

> € <K 1, complex eigenvalues may arise from ¢ = 0 double eigenvalues



Floquet-Fourier Computation

> wn(k;e€): real o ; complex

> ‘—" wn(k;0)=—-ntk
—" wo(k;0) = +tk

> wn(k;€) curves are close to wn (k;0)

> two continuous curves close to

> the rest are shifted due to
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> For each k, how many Floquet exponents are associated with the unstable solu-
tions of Mathieu equation? two or -7 Both!
> two is understood from perturbation analysis

> will be understood from the Riemann surface of w(k;¢) with k € C



Floquet-Fourier Computation

> wn(k;e€): real o ; complex

> ‘—" wn(k;0)=—-ntk
—" wo(k;0) = +tk
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> For each k, how many Floquet exponents are associated with the unstable solu-
tions of Mathieu equation? two or co? Both!

> two is understood from perturbation analysis

> oo will be understood from the Riemann surface of w(k;¢) with k € C



A Riemann Surface Interpretation of w(k;¢)
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> Floquet-Fourier computation with k € C — the Riemann surface of w(k;¢)
> surface height: real w ; surface colour: imag w
> layers of curves for k € R become layers of sheets for k € C
> the two physical branches belong to two primary Riemann sheets

> How to identify the two primary Riemann sheets?

> more understanding of how sheets are connected



A Riemann Surface Interpretation of w(k;¢)
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Imag k
> zoomed view near Rek = 1/2 shows Riemann sheet connection
> branch points: end points of instability intervals

> loop around the branch points = \/ type

> branch cuts coincide with instability intervals (McKean & Trubowitz 1975)



A Riemann Surface Interpretation of w(k;¢)

~b

> zoomed view near Re k = 0 shows Riemann sheet connection
> branch points: two on imaginary axis

> loop around the branch points = \/ type

> branch cuts to +ico give V-shaped sheets



A Riemann Surface Interpretation of w(k;¢)
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> branch cuts: instability intervals & two cuts to =+ 700
> two primary sheets: upward & downward V-shaped sheets

> associated with the two physically-relevant Floquet exponents

> the other sheets are integer-shifts of primary sheets

imag @



A Riemann Surface Interpretation of w(k;¢)
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imag k
> branch cuts: instability intervals & two cuts to =+ 700
> two primary sheets: upward & downward V-shaped sheets
> associated with the two physically-relevant Floquet exponents

> the other sheets are integer-shifts of primary sheets

imag o



Recap of Mathieu Equation

N
> Floquet-Fourier: < Z ) =Wt ZNc*ne‘”"t
> 4N + 2 computed Floquet exponents wy, (k; €)
> perturbation analysis: w(k;e) ~ tk

> Riemann surface has two primary Riemann sheets (physically-relevant)

imag k

imag o



Chapter 4, 5, 6 of My Thesis

> Floquet-Fourier: ( “g ) = eilkatmz—wt) {

> perturbation analysis: w(k, m;e, ) ~ +

K|

n=—N n

V52k2+m2

> Riemann surface analysis = physically-relevant Floquet exponents

0
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> 4N + 2 computed Floquet exponents wy, (k, m; ¢, d)
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Gravity Wave Stability Problem

> four parameters of w(k, m;e, d)

> ¢ 6 =1.7 (Lin)

> wavevector, (k,m); k€ Cwithk—m=25
> over-counting of Floquet-Fourier computation

> vertical & horizontal shifts — instability bands
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Gravity Wave Stability Problem

>

four parameters of w(k, m;e¢, §)

> ¢ 6 =1.7 (Lin)

> wavevector, (k,m); k€ Cwithk—m=25
over-counting of Floquet-Fourier computation

> vertical & horizontal shifts — instability bands
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physically-relevant Floquet exponents solves over-counting problem




Fixing the Gap along k —m =1
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> new feature: four-sheet collision (only two for Mathieu!)

> physically corresponds to near-resonance of four fourier modes (section 5.3)



Fixing the Gap along k —m =1
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> zoomed view near Rek = 0 with Riemann
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Fixing the Gap along k —m =1
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> continuation algorithm for w(k, m;e = 0.1) starts from € = 0 values



Fixing the Gap along k —m =1
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> continuation algorithm for w(k, m;e = 0.1) starts from ¢ = 0 values

> € = 0.02: shows ¢ = 0 limit incorrect



Fixing the Gap along k —m =1
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> continuation algorithm for w(k, m;e = 0.1) starts from ¢ = 0 values

> € = 0.02: suggests redefining ¢ = 0 branch values (continuous)



Fixing the Gap along k —m =1
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> continuation algorithm for w(k, m;e = 0.1) starts from ¢ = 0 values

> ¢ = 0.06: instability bands are about to merge



Fixing the Gap along k —m =1
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> continuation algorithm for w(k, m; e

> € =0.1: the gap
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Instabilities from Two Primary Sheets
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> stability diagram is a superposition of instabilities from the two primary sheets
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> both primary sheets are continuous in Rew & Imw

> over-counting problem is solved by complex analysis!




In Closing: What | Have Learned
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> density-stratified fluid dynamics & internal gravity waves

> linear stability analysis

> the Mathieu equation, Floquet theory & Floquet-Fourier computation
> perturbation analysis (near & away from resonance)

> understanding the Riemann surface structure & computation



Four Sheets: ¢ = 0.1
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